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shortcoming, since in this case we have neither a diffracted wave, nor a penumbral zone. In 
this case we cannot obtain any diffusion equations within the focusing zone. These two limit- 
ing cases, namely the case of a small aperture angle of the reflector discussed in /6/, and 
a fully opened reflector, lead to basically different structures of the solution within the 
focusing zone. We can obtain a solution suitable for all cases only by taking into account 
the penumbral zone away from the focus. We note that the methods used in /lO/ do not enable 
the effect of the reflector edges on the focusing of the shock wave in a viscous fluid to be 
taken into account, since they are based on the wave acoustics of ideal media. 
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APPROXIMATE FORMULAS FOR HEAT FLOWS TOWARDS AN IDEALLY CATALYTIC SURFACE NEAR 
A PLANE OF SYMMETRY* 

1-G. BRYKINA, V.V. RUSAKOV and V.G. SHCHERBAK 

The three-dimensional flow of a chemically unstable viscous gas near a 
plane of symmetry of blunt bodies streamlined at the angle of attack, is 
considered. The investigation is carried out using a model of a thin, 
viscous shock layer. To a first approximation of the method of 
successive approximations for a uniform gas simple formulas are obtained 
for the distribution of the heat flux over the surface, referred to its 
value at the stagnation point. It is shown that for a chemically 
unstable gas the distribution of the heat flux along an ideally 
catalytic surface depends only slightly on the conditions prevailing 
within the incident flow, is determined mainly by the geometrical 
characteristics of the body, and is described quite satisfactorily by 
the formulas obtained. The accuracy of these formulas is determined by 
comparison with numerical computations carried out for bodies of various 
shapes, moving at different angles of attack along a planing trajectory 
of re-entry into the Earth's atmosphere, and during re-entry into the 
atmosphere at a constant velocity. 

1. Let us consider the three-dimensional steady flow past a blunt body of a stream of 
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viscous, chemically unstable gas at a very high supersonic velocity, with the flow pattern 
changing from the "diffused" layer mode in which the viscosity is appreciable over the whole 
region of perturbed flow,to modes with a sharply delineated boundary layer. Let z = f (5, y)be 

the equation of the surface of the body in a Cartesian system of coordinates, let the velocity 
vectorv, of the incident flow coincide in direction with the z axisand let the origin of coord 
nates be at the stagnation point. We choose a system of curvilinear, non-orthogonal coordi- 
nates(z', 2, x3), attached normally to the streamlined surface, 33 = const is a family of 
surfaces parallel to the surface-of the body (2 = 0), and we choose x1 and x0' at the 

surface as follows: $1 = 5, 9 = y, z = f (xl, 2). 
Let x2 = 0 be the plane of symmetry of the body. We shall study the flow in the 

neighbourhood of this surface using a model of a thin, three-dimensional viscous shock layer 

/I/. Taking into account the unstable chemical reactions and the multicomponent diffusion, 
while neglecting thermal and barodiffusion, we can write the equations of the viscous shock 
layer near the plane of symmetry in the form 

i- 

p (Du* + (u”)” -i- A, (u’)‘) = - pz + A, g + & (& $$ 1 
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a = 1 + f-l, b = fll”, A, = & f,,"f,,", A, = + fl’fza’ 
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Here V,ul, V_xW, V-u3 are the physical components of the velocity vector corresponding 
to the axes x1,x8, 2; p,Vw2p, p-p, TOT are the pressure, density and temperature, respectively, 
of the mixture of gases containing N chemical components (T, = V,%,,); CL,+, cp,+,, Re,, u, m 
are the coefficient of viscosity, specific heat capacity, Reynolds number, Prandtl number 
and molecular mass of the mixture ci,rni,c pwT,hi, CpmCpiy p,VwZi, p~V~wi’/R is the mass concen- 
tration, molecular mass, specific enthalpy and heat capacity, the normal component of the 
diffusion flux vector of the k-th element, Ne is the number of elements, Sij are the binary 
Schmidt numbers, +RG is the universal gas constant and V, is the modulus of the velocity 
vector of the incoming flow. All linear dimensions are referred to the characteristic linear 
dimension R representing the radius of curvature of the surface at,the stagnation point in the 
plane of symmetry. The indices co, w,s refer, respectively, to the parameters in the incoming 
flow, at the surface of the body, and at the inner boundary of the shock wave. 

When specifying the bounary conditions on the surface of an impermeable body, which is 
assumed to be an uniform emitter, we take into account the effect of the catalytic recombination 
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of atoms on the wall, as well as the rate of slippage and the temperature 
component, unstable gas mixture /2, 3/: 

jump in the multi- 

pep r3T 
q=-a,3 a Re, + + u1 -$ - fl hiZi 

m iz: 
I;=-. 2 -b VFF PC{, kG = yi (T,) 2--Y, i =I,. . . , N -- Ne 

ui 

z,* = 0, j = 1, . ..,Ne-1 

Here 8, yit E are the accommodation coefficient, the catalytic recombination coefficient 
and the surface blackness coefficient, and ug is the Stefan-Boltzmann constant. 

We specify on the shock wave the generalized Rankine-Hugoniot relations which, in the 
approximation of high supersonic velocities neglecting chemical reactions, take the following 
form /4/: 

p = (u,~)‘, H = h + 0,5 (u’)” 

L3 (Q*-&)+Z,*=O, k=l,.. .,Ne-1 
u,~(c~-cc,,)+Z~=O, i=l,...,N-Ne 

When considering the chemical reactions, we assume that the following five components 
are present in the perturbed region of the flow: N,, $7 NO, N, 0, and that dissociation-re- 
combination and exchange reactions take plane between them. The system of reactions, the 
reaction rate constants and the transport coefficients are identical with those used in /5/, 
and we assume that the internal degrees of freedom are equally-excited. 

2. The equations of a thin, viscous shock layer in a homogeneous gas near the plane of 
symmetry of a blunt body with a given surface temperature were solved using the integral 
method of successive approximations /6, 7/. The equations of momentum and energy were inte- 
grated twice over the transverse coordinate, taking the boundary conditions into account. In 
order to solve the resulting system of integrodifferential equations, we constructed an iter- 
ative process in which every consecutive approximation is expressed, for the functions sought, 
in terms of the integrals of the functions of the preceding approximation. In order that all 
the approximations should satisfy the boundary conditions on the body as well as on the shock 
wave, we introduced, at every step of the iterative process, additional control functions 
Ai (x) (i = d, $, H), for which we obtained ordinary differential equations which do not, in 
general, have analytic solutions. 

Earlier /a/ the first approximation of this method was used with the zero-th approxi- 
mations for the velocity components and enthalpy in the form of linear functions to obtain 
the solution of the problem for the case when the equations for the control functions were 
solved in the locally selfsimilar approximation, i.e. neglecting terms containing the deriva- 
tives dAildx. For moderate and high Reynolds numbers (Re, > IOOO), when the slippage effects 
at the body and on the shock wave can be neglected, we can simplify the equations for bi, 
integrate them, and thus obtain a non-locally selfsimilar analytic solution in the first 
approximation. 

In particular we obtain for the distribution of the Stanton number cH = q&V, (H, - H,) 
along the stream line, 

(2.1) 
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Here y is the ratio of the specific heats, Re is the Reynolds number behind the shock 

wave, a is the angle between the incoming flow and the normal to the surface, H* is the 

curvature of the stream line near the plane of symmetry, and H is the mean curvature of the 
surface at the given point, equal to half the sum of the principal curvatures. In the chosen 

coordinate system we have 

tga=f,‘, H* = fu” 
(i + f,Q)“ ’ 

H=+ H*+ 
i 

&.$ 
I 

Integrating the second equation of (2.1) we obtain from the first equation the following 
relation for the magnitude of the heat flux referred to its value at the stagnation point: 

Here the subscript 0 denotes quantities at the stagnation point, and s is the arc length 
measured from this point (dz = cos ads). 

F cos ads I -‘I. 8 4H 
ltga' F= exp tga ds 

s 
0 0 

Solving the second equation of (2.1) in the locally selfsimilar approximation, we obtain 

Q., = 1/H cosSa/H,h (2.3) 

This formula differs from the analogous formula obtained in /0/ in having the multiplying 
factor h-l. It is due to the deviation of the pressure distribution from the Newtonian 
distribution, and the formula is therefore more accurate. 

From the analytic solution obtained it follows that at moderate and high Reynolds numbers 
(Re 2 100) the magnitude of relative heat flux is independent of Re, as well as of u, y and 
the surface temperature T, (for a cooled wall). The fact that q* ceases to depend on Re 
and depends only slightly on the remaining parameters characterizing the flow of a uniform 
gas, is determined mainly by the geometrical characteristics of the streamlined body, and can 
be described quite satisfactorily by the formulas obtained, is fully confirmed by numerical 
computations carried out over a wide range of variation of these parameters (Re = 10a...104, y = 
1.1...1.67, T, = 0...0.5). 

Comparison with numerical results obtained for bodies of various shapes streamlined at 
various angles of attack (from 0 to 45") has shown that formulas (2.2) are accurate in the 
case of a homogeneous gas. The computations showed that the difference between the results 
obtained using formulas (2.2) and (2.3) does not exceed, in the majority of cases, several 
percent. However, formula (2.2) gives a much greater accuracy in the case of a flow at the 
angle of attack from the side of the stagnation point at which the radius of the longitudinal 
curvature of the contour of the body decreases. 

Note that the formulas obtained for q* can also be used for axisymmetric flows. In this 
case we have 

Here r is the distance between the surface of the body and the axis of symmetry, R is 
the radius of curvature of the generatrix, and H = 0.5(1/R + sin air). 

Investigations carried out show that for an ideally catalytic surface the distribution 
of the relative heat flux is independent of the way in which the chemical reactions proceed 
within the shock layer, and is close to the distribution which occurs in a flow of homogeneous 
gas. Formulas (2.2) and (2.3) hold with a sufficient degree of accuracy for values of the 
relative heat flux and for the chemically unstable flows in the case of an ideally catalytic 
surface, and this is true not only for the given surface temperature, but also for the case 
when the temperature is determined from the condition for equilibrium irradiation of the wall. 

In order to check the validity and assess the accuracy of formulas (2.2) and (2.3) for 
chemically unstable flows, we solved system (1.1) with boundary conditions (1.2), (1.3) numeri- 
cally, using a method analogous to that given in /5/. We used the scheme in /9/ with fourth 
order of accuracy of approximation over the transverse coordinate. At heights of h<T5km 
the mesh was tightened in the region near the shock wave and near the body. 

The distribution of the relative heat fluxes over the surface obtained using formulas 
(2.2) and (2.3), was compared with the numerical solution of Eqs.(l.l) for various elliptic 
paraboloids, two-sheet hyperboloids and triaxial ellipsoids streamlined at angles of attack 



760 

ranging from 0 to 45O. The conditions in the incoming flow corresponding, firstly, to motion 
at altitudes of 100 to 50 km over a planing trajectory of re-entry into the Earth's atmosphere 
/lo/ which was assumed to be isothermal, with a density distribution depending on the altitude 
h(km) : p, = 1.225.10dexp.(-O.~42h)g/cm' ,T,= 200°K and,secondly,to motions at the same heights at a 
constant velocity of V,=S km/set. Figs.l-4 show some results of a comparison of the approxi- 
mate and exact solutions (we assumed, in the course of the computation, that e=O.S5,Ez=l,R= 

0.7 m) . 
Fig.1 shows the distribution of the relative heat flux along the stream line for a two- 

sheet hyperboloid with a half aperture angle of 40°, in the plane i/=0, and a ratio of the 
principal curvatures at the stagnation point k= 2.5 (curves a), and for an ellipsoid with a 
ratio of 'the squares of the semi-axes 1 :k 1’0.5;k= 2.5(curve b) with angle of attacka.= oO. The 
distributions of Q*, obtained from a numerical solution of Eqs.(l.l) for an ideally catalytic 
surface and the planning trajectory of re-entry within an altitude range of 60 to 90 km, lie 
within the shaded area, while the dark and light dots show the results obtained using formulas 
(2.2) and (2.3) respectively. 

Fig.1 Fig.2 

Fig.3 Fig.4 

Fig.2 shows the distributions of the relative heat flux along the stream lines for various 
elliptic paraboloids streamlined at zero angle of attack, with a ratio of the principal curva- 
tures at the stagnation point equal to k= 0.4 (curves a), k= 2.5 (b) and k=l (C is an 
axisymmetric paraboloid). Eqs.(l.l) were solved numerically for an ideally catalytic surface 
at altitudes of 50 to 90 km, for a planning re-entry trajectory, as well as for the trajectory 
of re-entry at a constant velocity. All distributions of 4. at these altitudes calculated 
for both trajectories using formulas (2.2) and (2.3), lie within the shaded areas. 

Fig.3 shows how the value of 7. varies with the flight altitude h (planning trajectory) 
on a side surface at the point Z= 1, for a surface with different catalytic properties. 
Results are given for elliptic paraboloids with k- 1; 0.4 and 2.5. Curves 1 show the numerical 
solution of Eqs.(l.l) for a non-catlaytic surface, curves.2 for a surface on which hetero- 
geneous first-order reactions take place with rate constants which depend on temperature /ll/, 
and curves 3 for an ideally catalytic surface, with dashed lines corresponding to results 
obtained using formulas (2.2) and (2.3) (they practically coincide). We see that for an 
ideally catalytic surface the magnitude of the relative heat flux on the side surface is 
practically independent of the flight altitude, i.e. of the conditions in the incoming flow, 
while for other models of catalytic properties of the surface such a dependence is essential. 
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In Fig.4 the analytic and numerical solutions are compared for bodies streamlined at the 
angle of attack. The distributions of Q. are given along the lines of flow for a hyperboloid 
with aperture half-angle 40". k= 2.5, and angle of attack OL = 3o" (Fig.4a1, and an elliptic 
paraboloid for k = 0.4 a = 15, 30, 45' - curves l-3 respectively (Fig.4b). The shaded regions 
correspond to numerical solutions of Eqs.(l.l) for an ideally catalytic surface (planning 
trajectory) at altitudes ranging from 50 to 90 km, with the dark and light dots representing 
the results obtained from formulas (2.2) and (2.3). 

The results of the investigation have shown that the distribution of the relative heat 
flux on the ideally catalytic surface of a blunt body depends weakly on the degree of ais- 
sociation in the shock layer, including the frozen, chemically non-equilibrium and nearly 
equilibrium modes of flow, is basically determined by the shape of the body, and is satisfac- 
torily described by the formulas given. 

It should be noted that unlike the analogous forms for the values of Q*, proposed in 
boundary-layer theory (e.g. in /12, 13/j, formulas (2.2) and (2.3) firstly do not require a 
knowledge of the parameters at the outer boundary of the boundary layer, i.e. of the solution 
of inviscid flow, and depend only on the geometrical characteristics of the streamlined body, 
and secondly they can be used not only at large but also at moderate Reynolds numbers. 
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